Hierarchical Loglinear Models:
Hierarchical linear modeling is an approach to analysis of hierarchical (nested) data – i.e. data represented by categories, sub-categories, …, individual units (e.g. school -> classroom -> student).
At the first stage, we choose a linear model (level 1 model) and fit it to individual units in each group separately using conventional regression analysis . At the second stage, we consider estimates of the level 1 model parameters as dependent variables which linearly depend on the level 2 independent variables. The level 2 independent variables characterize groups, not individuals. We find level 2 regression parameters by a method of linear regression analysis.
There may be more than 2 levels in this process, provided there are more than two levels in the hierarchy of groups or categories, e.g. district -> school -> classroom -> student.
Browse Other Glossary Entries
Test Yourself
Planning on taking an introductory statistics course, but not sure if you need to start at the beginning? Review the course description for each of our introductory statistics courses and estimate which best matches your level, then take the self test for that course. If you get all or almost all the questions correct, move on and take the next test.
Data Analytics
Considering becoming adata scientist, customer analyst or our data science certificate program?
Analytics Quiz
Advanced Statistics Quiz
Statistics Quiz
Courses
Find the right course for you
Contact Us
We'd love to answer your questions
Our mentors and academic advisors are standing by to help guide you towards the courses or program that makes the most sense for you and your goals.
300 W Main St STE 301, Charlottesville, VA 22903
(434) 973-7673
ourcourses@statistics.com