Feature Selection:
In predictive modeling, feature selection, also called variable selection, is the process (usually automated) of sorting through variables to retain variables that are likely to be informative in prediction, and discard or combine those that are redundant. “Features” is a term used by the machine learning community, sometimes used to refer to the individual variables being combined, and sometimes used to refer to the derived variables that result from that process. “Subset selection” methods, originally developed for regression models, are an important feature selection method.
Glossary
Feature Selection
Test Yourself
Planning on taking an introductory statistics course, but not sure if you need to start at the beginning? Review the course description for each of our introductory statistics courses and estimate which best matches your level, then take the self test for that course. If you get all or almost all the questions correct, move on and take the next test.
Stay Informed
Our Blog
Read up on our latest blogs
Certificates
Learn about our certificate programs
Courses
Find the right course for you
Contact Us
We'd love to answer your questions
Our mentors and academic advisors are standing by to help guide you towards the courses or program that makes the most sense for you and your goals.
300 W Main St STE 301, Charlottesville, VA 22903